Type: \(\displaystyle 2A^{2}_1\) (Dynkin type computed to be: \(\displaystyle 2A^{2}_1\))
Simple basis: 2 vectors: (1, 2, 2, 2, 2, 2, 2, 1), (0, 0, 1, 2, 2, 2, 2, 1)
Simple basis epsilon form:
Simple basis epsilon form with respect to k:
Number of outer autos with trivial action on orthogonal complement and extending to autos of ambient algebra: 0
Number of outer autos with trivial action on orthogonal complement: 0.
C(k_{ss})_{ss}: C^{1}_4
simple basis centralizer: 4 vectors: (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Number of k-submodules of g: 80
Module decomposition, fundamental coords over k: \(\displaystyle 3V_{2\omega_{2}}+4V_{\omega_{1}+\omega_{2}}+3V_{2\omega_{1}}+16V_{\omega_{2}}+16V_{\omega_{1}}+38V_{0}\)
g/k k-submodules
idsizeb\cap k-lowest weightb\cap k-highest weightModule basisWeights epsilon coords
Module 11(0, 0, 0, 0, -2, -2, -2, -1)(0, 0, 0, 0, -2, -2, -2, -1)g_{-44}-2\varepsilon_{5}
Module 21(0, 0, 0, 0, -1, -2, -2, -1)(0, 0, 0, 0, -1, -2, -2, -1)g_{-39}-\varepsilon_{5}-\varepsilon_{6}
Module 31(0, 0, 0, 0, 0, -2, -2, -1)(0, 0, 0, 0, 0, -2, -2, -1)g_{-34}-2\varepsilon_{6}
Module 41(0, 0, 0, 0, -1, -1, -2, -1)(0, 0, 0, 0, -1, -1, -2, -1)g_{-33}-\varepsilon_{5}-\varepsilon_{7}
Module 51(0, 0, 0, 0, 0, -1, -2, -1)(0, 0, 0, 0, 0, -1, -2, -1)g_{-28}-\varepsilon_{6}-\varepsilon_{7}
Module 61(0, 0, 0, 0, -1, -1, -1, -1)(0, 0, 0, 0, -1, -1, -1, -1)g_{-27}-\varepsilon_{5}-\varepsilon_{8}
Module 71(0, 0, 0, 0, 0, 0, -2, -1)(0, 0, 0, 0, 0, 0, -2, -1)g_{-22}-2\varepsilon_{7}
Module 81(0, 0, 0, 0, 0, -1, -1, -1)(0, 0, 0, 0, 0, -1, -1, -1)g_{-21}-\varepsilon_{6}-\varepsilon_{8}
Module 91(0, 0, 0, 0, -1, -1, -1, 0)(0, 0, 0, 0, -1, -1, -1, 0)g_{-20}-\varepsilon_{5}+\varepsilon_{8}
Module 101(0, 0, 0, 0, 0, 0, -1, -1)(0, 0, 0, 0, 0, 0, -1, -1)g_{-15}-\varepsilon_{7}-\varepsilon_{8}
Module 111(0, 0, 0, 0, 0, -1, -1, 0)(0, 0, 0, 0, 0, -1, -1, 0)g_{-14}-\varepsilon_{6}+\varepsilon_{8}
Module 121(0, 0, 0, 0, -1, -1, 0, 0)(0, 0, 0, 0, -1, -1, 0, 0)g_{-13}-\varepsilon_{5}+\varepsilon_{7}
Module 131(0, 0, 0, 0, 0, 0, 0, -1)(0, 0, 0, 0, 0, 0, 0, -1)g_{-8}-2\varepsilon_{8}
Module 141(0, 0, 0, 0, 0, 0, -1, 0)(0, 0, 0, 0, 0, 0, -1, 0)g_{-7}-\varepsilon_{7}+\varepsilon_{8}
Module 151(0, 0, 0, 0, 0, -1, 0, 0)(0, 0, 0, 0, 0, -1, 0, 0)g_{-6}-\varepsilon_{6}+\varepsilon_{7}
Module 161(0, 0, 0, 0, -1, 0, 0, 0)(0, 0, 0, 0, -1, 0, 0, 0)g_{-5}-\varepsilon_{5}+\varepsilon_{6}
Module 172(0, 0, -1, -1, -2, -2, -2, -1)(0, 0, 0, 1, 0, 0, 0, 0)g_{4}
g_{-51}
\varepsilon_{4}-\varepsilon_{5}
-\varepsilon_{3}-\varepsilon_{5}
Module 181(0, 0, 0, 0, 1, 0, 0, 0)(0, 0, 0, 0, 1, 0, 0, 0)g_{5}\varepsilon_{5}-\varepsilon_{6}
Module 191(0, 0, 0, 0, 0, 1, 0, 0)(0, 0, 0, 0, 0, 1, 0, 0)g_{6}\varepsilon_{6}-\varepsilon_{7}
Module 201(0, 0, 0, 0, 0, 0, 1, 0)(0, 0, 0, 0, 0, 0, 1, 0)g_{7}\varepsilon_{7}-\varepsilon_{8}
Module 211(0, 0, 0, 0, 0, 0, 0, 1)(0, 0, 0, 0, 0, 0, 0, 1)g_{8}2\varepsilon_{8}
Module 222(0, 0, 0, -1, -2, -2, -2, -1)(0, 0, 1, 1, 0, 0, 0, 0)g_{11}
g_{-48}
\varepsilon_{3}-\varepsilon_{5}
-\varepsilon_{4}-\varepsilon_{5}
Module 232(0, 0, -1, -1, -1, -2, -2, -1)(0, 0, 0, 1, 1, 0, 0, 0)g_{12}
g_{-47}
\varepsilon_{4}-\varepsilon_{6}
-\varepsilon_{3}-\varepsilon_{6}
Module 241(0, 0, 0, 0, 1, 1, 0, 0)(0, 0, 0, 0, 1, 1, 0, 0)g_{13}\varepsilon_{5}-\varepsilon_{7}
Module 251(0, 0, 0, 0, 0, 1, 1, 0)(0, 0, 0, 0, 0, 1, 1, 0)g_{14}\varepsilon_{6}-\varepsilon_{8}
Module 261(0, 0, 0, 0, 0, 0, 1, 1)(0, 0, 0, 0, 0, 0, 1, 1)g_{15}\varepsilon_{7}+\varepsilon_{8}
Module 272(-1, -1, -1, -1, -2, -2, -2, -1)(0, 1, 1, 1, 0, 0, 0, 0)g_{17}
g_{-56}
\varepsilon_{2}-\varepsilon_{5}
-\varepsilon_{1}-\varepsilon_{5}
Module 282(0, 0, 0, -1, -1, -2, -2, -1)(0, 0, 1, 1, 1, 0, 0, 0)g_{18}
g_{-43}
\varepsilon_{3}-\varepsilon_{6}
-\varepsilon_{4}-\varepsilon_{6}
Module 292(0, 0, -1, -1, -1, -1, -2, -1)(0, 0, 0, 1, 1, 1, 0, 0)g_{19}
g_{-42}
\varepsilon_{4}-\varepsilon_{7}
-\varepsilon_{3}-\varepsilon_{7}
Module 301(0, 0, 0, 0, 1, 1, 1, 0)(0, 0, 0, 0, 1, 1, 1, 0)g_{20}\varepsilon_{5}-\varepsilon_{8}
Module 311(0, 0, 0, 0, 0, 1, 1, 1)(0, 0, 0, 0, 0, 1, 1, 1)g_{21}\varepsilon_{6}+\varepsilon_{8}
Module 321(0, 0, 0, 0, 0, 0, 2, 1)(0, 0, 0, 0, 0, 0, 2, 1)g_{22}2\varepsilon_{7}
Module 332(0, -1, -1, -1, -2, -2, -2, -1)(1, 1, 1, 1, 0, 0, 0, 0)g_{23}
g_{-54}
\varepsilon_{1}-\varepsilon_{5}
-\varepsilon_{2}-\varepsilon_{5}
Module 342(-1, -1, -1, -1, -1, -2, -2, -1)(0, 1, 1, 1, 1, 0, 0, 0)g_{24}
g_{-53}
\varepsilon_{2}-\varepsilon_{6}
-\varepsilon_{1}-\varepsilon_{6}
Module 352(0, 0, 0, -1, -1, -1, -2, -1)(0, 0, 1, 1, 1, 1, 0, 0)g_{25}
g_{-38}
\varepsilon_{3}-\varepsilon_{7}
-\varepsilon_{4}-\varepsilon_{7}
Module 362(0, 0, -1, -1, -1, -1, -1, -1)(0, 0, 0, 1, 1, 1, 1, 0)g_{26}
g_{-37}
\varepsilon_{4}-\varepsilon_{8}
-\varepsilon_{3}-\varepsilon_{8}
Module 371(0, 0, 0, 0, 1, 1, 1, 1)(0, 0, 0, 0, 1, 1, 1, 1)g_{27}\varepsilon_{5}+\varepsilon_{8}
Module 381(0, 0, 0, 0, 0, 1, 2, 1)(0, 0, 0, 0, 0, 1, 2, 1)g_{28}\varepsilon_{6}+\varepsilon_{7}
Module 392(0, -1, -1, -1, -1, -2, -2, -1)(1, 1, 1, 1, 1, 0, 0, 0)g_{29}
g_{-50}
\varepsilon_{1}-\varepsilon_{6}
-\varepsilon_{2}-\varepsilon_{6}
Module 402(-1, -1, -1, -1, -1, -1, -2, -1)(0, 1, 1, 1, 1, 1, 0, 0)g_{30}
g_{-49}
\varepsilon_{2}-\varepsilon_{7}
-\varepsilon_{1}-\varepsilon_{7}
Module 412(0, 0, 0, -1, -1, -1, -1, -1)(0, 0, 1, 1, 1, 1, 1, 0)g_{31}
g_{-32}
\varepsilon_{3}-\varepsilon_{8}
-\varepsilon_{4}-\varepsilon_{8}
Module 422(0, 0, -1, -1, -1, -1, -1, 0)(0, 0, 0, 1, 1, 1, 1, 1)g_{32}
g_{-31}
\varepsilon_{4}+\varepsilon_{8}
-\varepsilon_{3}+\varepsilon_{8}
Module 431(0, 0, 0, 0, 1, 1, 2, 1)(0, 0, 0, 0, 1, 1, 2, 1)g_{33}\varepsilon_{5}+\varepsilon_{7}
Module 441(0, 0, 0, 0, 0, 2, 2, 1)(0, 0, 0, 0, 0, 2, 2, 1)g_{34}2\varepsilon_{6}
Module 452(0, -1, -1, -1, -1, -1, -2, -1)(1, 1, 1, 1, 1, 1, 0, 0)g_{35}
g_{-46}
\varepsilon_{1}-\varepsilon_{7}
-\varepsilon_{2}-\varepsilon_{7}
Module 462(-1, -1, -1, -1, -1, -1, -1, -1)(0, 1, 1, 1, 1, 1, 1, 0)g_{36}
g_{-45}
\varepsilon_{2}-\varepsilon_{8}
-\varepsilon_{1}-\varepsilon_{8}
Module 472(0, 0, 0, -1, -1, -1, -1, 0)(0, 0, 1, 1, 1, 1, 1, 1)g_{37}
g_{-26}
\varepsilon_{3}+\varepsilon_{8}
-\varepsilon_{4}+\varepsilon_{8}
Module 482(0, 0, -1, -1, -1, -1, 0, 0)(0, 0, 0, 1, 1, 1, 2, 1)g_{38}
g_{-25}
\varepsilon_{4}+\varepsilon_{7}
-\varepsilon_{3}+\varepsilon_{7}
Module 491(0, 0, 0, 0, 1, 2, 2, 1)(0, 0, 0, 0, 1, 2, 2, 1)g_{39}\varepsilon_{5}+\varepsilon_{6}
Module 502(0, -1, -1, -1, -1, -1, -1, -1)(1, 1, 1, 1, 1, 1, 1, 0)g_{40}
g_{-41}
\varepsilon_{1}-\varepsilon_{8}
-\varepsilon_{2}-\varepsilon_{8}
Module 512(-1, -1, -1, -1, -1, -1, -1, 0)(0, 1, 1, 1, 1, 1, 1, 1)g_{41}
g_{-40}
\varepsilon_{2}+\varepsilon_{8}
-\varepsilon_{1}+\varepsilon_{8}
Module 522(0, 0, 0, -1, -1, -1, 0, 0)(0, 0, 1, 1, 1, 1, 2, 1)g_{42}
g_{-19}
\varepsilon_{3}+\varepsilon_{7}
-\varepsilon_{4}+\varepsilon_{7}
Module 532(0, 0, -1, -1, -1, 0, 0, 0)(0, 0, 0, 1, 1, 2, 2, 1)g_{43}
g_{-18}
\varepsilon_{4}+\varepsilon_{6}
-\varepsilon_{3}+\varepsilon_{6}
Module 541(0, 0, 0, 0, 2, 2, 2, 1)(0, 0, 0, 0, 2, 2, 2, 1)g_{44}2\varepsilon_{5}
Module 552(0, -1, -1, -1, -1, -1, -1, 0)(1, 1, 1, 1, 1, 1, 1, 1)g_{45}
g_{-36}
\varepsilon_{1}+\varepsilon_{8}
-\varepsilon_{2}+\varepsilon_{8}
Module 562(-1, -1, -1, -1, -1, -1, 0, 0)(0, 1, 1, 1, 1, 1, 2, 1)g_{46}
g_{-35}
\varepsilon_{2}+\varepsilon_{7}
-\varepsilon_{1}+\varepsilon_{7}
Module 572(0, 0, 0, -1, -1, 0, 0, 0)(0, 0, 1, 1, 1, 2, 2, 1)g_{47}
g_{-12}
\varepsilon_{3}+\varepsilon_{6}
-\varepsilon_{4}+\varepsilon_{6}
Module 582(0, 0, -1, -1, 0, 0, 0, 0)(0, 0, 0, 1, 2, 2, 2, 1)g_{48}
g_{-11}
\varepsilon_{4}+\varepsilon_{5}
-\varepsilon_{3}+\varepsilon_{5}
Module 592(0, -1, -1, -1, -1, -1, 0, 0)(1, 1, 1, 1, 1, 1, 2, 1)g_{49}
g_{-30}
\varepsilon_{1}+\varepsilon_{7}
-\varepsilon_{2}+\varepsilon_{7}
Module 602(-1, -1, -1, -1, -1, 0, 0, 0)(0, 1, 1, 1, 1, 2, 2, 1)g_{50}
g_{-29}
\varepsilon_{2}+\varepsilon_{6}
-\varepsilon_{1}+\varepsilon_{6}
Module 612(0, 0, 0, -1, 0, 0, 0, 0)(0, 0, 1, 1, 2, 2, 2, 1)g_{51}
g_{-4}
\varepsilon_{3}+\varepsilon_{5}
-\varepsilon_{4}+\varepsilon_{5}
Module 623(0, 0, -2, -2, -2, -2, -2, -1)(0, 0, 0, 2, 2, 2, 2, 1)g_{52}
g_{-3}
g_{-58}
2\varepsilon_{4}
-\varepsilon_{3}+\varepsilon_{4}
-2\varepsilon_{3}
Module 632(0, -1, -1, -1, -1, 0, 0, 0)(1, 1, 1, 1, 1, 2, 2, 1)g_{53}
g_{-24}
\varepsilon_{1}+\varepsilon_{6}
-\varepsilon_{2}+\varepsilon_{6}
Module 642(-1, -1, -1, -1, 0, 0, 0, 0)(0, 1, 1, 1, 2, 2, 2, 1)g_{54}
g_{-23}
\varepsilon_{2}+\varepsilon_{5}
-\varepsilon_{1}+\varepsilon_{5}
Module 653(0, 0, -1, -2, -2, -2, -2, -1)(0, 0, 1, 2, 2, 2, 2, 1)g_{55}
h_{8}+2h_{7}+2h_{6}+2h_{5}+2h_{4}+h_{3}
g_{-55}
\varepsilon_{3}+\varepsilon_{4}
0
-\varepsilon_{3}-\varepsilon_{4}
Module 662(0, -1, -1, -1, 0, 0, 0, 0)(1, 1, 1, 1, 2, 2, 2, 1)g_{56}
g_{-17}
\varepsilon_{1}+\varepsilon_{5}
-\varepsilon_{2}+\varepsilon_{5}
Module 674(-1, -1, -2, -2, -2, -2, -2, -1)(0, 1, 1, 2, 2, 2, 2, 1)g_{57}
g_{-16}
g_{2}
g_{-61}
\varepsilon_{2}+\varepsilon_{4}
-\varepsilon_{1}+\varepsilon_{4}
\varepsilon_{2}-\varepsilon_{3}
-\varepsilon_{1}-\varepsilon_{3}
Module 683(0, 0, 0, -2, -2, -2, -2, -1)(0, 0, 2, 2, 2, 2, 2, 1)g_{58}
g_{3}
g_{-52}
2\varepsilon_{3}
\varepsilon_{3}-\varepsilon_{4}
-2\varepsilon_{4}
Module 694(0, -1, -2, -2, -2, -2, -2, -1)(1, 1, 1, 2, 2, 2, 2, 1)g_{59}
g_{-10}
g_{9}
g_{-60}
\varepsilon_{1}+\varepsilon_{4}
-\varepsilon_{2}+\varepsilon_{4}
\varepsilon_{1}-\varepsilon_{3}
-\varepsilon_{2}-\varepsilon_{3}
Module 704(-1, -1, -1, -2, -2, -2, -2, -1)(0, 1, 2, 2, 2, 2, 2, 1)g_{60}
g_{-9}
g_{10}
g_{-59}
\varepsilon_{2}+\varepsilon_{3}
-\varepsilon_{1}+\varepsilon_{3}
\varepsilon_{2}-\varepsilon_{4}
-\varepsilon_{1}-\varepsilon_{4}
Module 714(0, -1, -1, -2, -2, -2, -2, -1)(1, 1, 2, 2, 2, 2, 2, 1)g_{61}
g_{-2}
g_{16}
g_{-57}
\varepsilon_{1}+\varepsilon_{3}
-\varepsilon_{2}+\varepsilon_{3}
\varepsilon_{1}-\varepsilon_{4}
-\varepsilon_{2}-\varepsilon_{4}
Module 723(-2, -2, -2, -2, -2, -2, -2, -1)(0, 2, 2, 2, 2, 2, 2, 1)g_{62}
g_{-1}
g_{-64}
2\varepsilon_{2}
-\varepsilon_{1}+\varepsilon_{2}
-2\varepsilon_{1}
Module 733(-1, -2, -2, -2, -2, -2, -2, -1)(1, 2, 2, 2, 2, 2, 2, 1)g_{63}
h_{8}+2h_{7}+2h_{6}+2h_{5}+2h_{4}+2h_{3}+2h_{2}+h_{1}
g_{-63}
\varepsilon_{1}+\varepsilon_{2}
0
-\varepsilon_{1}-\varepsilon_{2}
Module 743(0, -2, -2, -2, -2, -2, -2, -1)(2, 2, 2, 2, 2, 2, 2, 1)g_{64}
g_{1}
g_{-62}
2\varepsilon_{1}
\varepsilon_{1}-\varepsilon_{2}
-2\varepsilon_{2}
Module 751(0, 0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0, 0)h_{1}0
Module 761(0, 0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0, 0)h_{3}0
Module 771(0, 0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0, 0)h_{5}0
Module 781(0, 0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0, 0)h_{6}0
Module 791(0, 0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0, 0)h_{7}0
Module 801(0, 0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0, 0)h_{8}0

Information about the subalgebra generation algorithm.
Heirs rejected due to having symmetric Cartan type outside of list dictated by parabolic heirs: 42
Heirs rejected due to not being maximally dominant: 30
Heirs rejected due to not being maximal with respect to small Dynkin diagram automorphism that extends to ambient automorphism: 30
Heirs rejected due to having ambient Lie algebra decomposition iso to an already found subalgebra: 0
Parabolically induced by A^{2}_1
Potential Dynkin type extensions: 3A^{2}_1, 2A^{2}_1+A^{1}_1,